Note: - Attempt any 5 questions (Atleast One from each CO). All questions carry equal marks.

Q.	Questions	Marks	Levels of Bloom's taxonomy

Define Modulation. What is the need for modulation.
Also Define Modulation Index. Explain the meaning of over modulation, Undermdulation and Critical modulation on the basis of value of modulation index with the help of modulated signal

State and Prove Parseval's theorem for Energy signal
Explain Square law modulator and demodulator for generating and detecting AM Signal.
4 Determine the fourier transform of the Gaussian pulse $\mathrm{x}(\mathrm{t})=e^{-b^{2} t^{2}}$
Compare all the AM techniques under following heads
a) Bandwidth
b) Power saving
c) Application
[8] Apply
CO 2
d) Transmitter and Receiver complexity
e) Frequency spectrum
f) Standard equation

A given AM broadcast station transmits a total power of 40 kW when the carrier is modulated by a sinosidal signalwith a modulation idex of 0.8, Calculate
a) The Carrier Power
[8] Apply
COI
b) The Tranmission Efficiency
c) The peak amplitude of the carrier assuming the antenna to be represented by a $(40+\mathrm{j} 0) \Omega$
Explain Armstrong method of generating FM Signal
[8] Understanding CO 3
Differentiate between NBFM and WBFM
[8] UnderstandingCO3

Shri Shankaracharya Institute of Professional Management \& Technology

 Department of Electronics and Telecommunication EngineeringSSIPMT
Class Test - I Session- Jan-June, 2022 Month- June
RAIPUR
Sem- ET\&T 4 ${ }^{\text {th }}$ Subject- Probability Theory and Stochastic Processes - B028415(28)
Time Allowed: 2 hrs Max Marks: 40
Note: - Attempt any 5 question. All questions carry equal marks.

Q. NO.

A random Variable X has a distributi
$\mathrm{F}_{\mathrm{X}}(\mathrm{X})=\sum_{n=1}^{12} \frac{(n)^{2}}{650} \mathrm{u}(\mathrm{X}-\mathrm{n})$

Marks | Levels of |
| :---: |
| Bloom's |
| taxonomy |\quad COs

[8] Apply
CO 2

Find: 1. $\mathrm{P}\{$ - infinity $\leq \mathrm{X} \leq 6.5\}$
2. $\mathrm{P}\{\mathrm{X}>4\} \quad$ 3. $\mathrm{P}\{6<\mathrm{X} \leq 9\}$

Find a constant b such that
2. $\quad f(x)= \begin{cases}c^{3 x / 4} & 0 \leq x \leq b \\ 0 & \text { elsewhere }\end{cases}$

Is a valid density function.
A student is known to arrive late in the class 40% of the time. If the class meets five times each week find:

Apply

1. The probability that student is late for atleast three classes in a week.
2. Probability the student will not be late at all during a given week.

An airline in a small city has five departures each day. It is knownthat any given flight has a probability of 0.3 of departing late. For any given day, determine the probabilities that:

1. No flights depart late
2. All flights depart late
3. Three or more flights depart late

Find the value of constant of A such that
5.

$$
\begin{aligned}
& x<-1 \\
& 1>x \leq 1 \\
& 1<x
\end{aligned}
$$

Is a valid density function
In a box there are 100 resistors having resistance and tolerance as shown in the table below. Three events are defined as A as "draw a 47 ohm resistor", B as "draw a resistor having tolerance 5% ", C as "draw a 100 ohm resistor". Find the joint and conditional probabilities.

Resistor (ohm)	Tolerance		
	$\mathbf{5 \%}$	$\mathbf{1 0 \%}$	Total
22	10	14	24
47	28	16	44
100	24	8	32
Total	62	38	100

Shri Shankaracharya Institute of Professional Management \& Technology
 Department of Electronics and Telecommunication Engineering

Time Allowed: 2 hrs Max Marks: 40
Note: -
Part 1 carry $\mathbf{2}$ marks for each question, part $\mathbf{2}$ carry $\mathbf{8}$ marks for each question. Attempt $\mathbf{4}$ questions from each part.
Q.

Questions
Marks
Levels of
Q.

Bloom's
taxonomy

PART-1

1. A Scalar function, V is given by $V=x y z^{2}$, find the gradient of V.

2
Apply
2. If a vector, $\vec{B}=4 x y^{2} \hat{a} x+2 y^{3} \hat{a} y+x y z \hat{a} z$. find divegence of B.

2
Apply
3. Given a vector, $\vec{A}=3 x \hat{a}_{x}+y \hat{a}_{y}+5 z \hat{a}_{z}$. Find the curt of \vec{A}.

2
Apply

Apply

Apply

PART-2

6. Two charges $Q_{1}=2 \mu c$ \& $Q_{2}=5 \mu c$ are located at $(-3,7,4) \quad \&(2,4,-1)$ respectivly. Determine the force on Q_{2} due to Q_{1}.
7. Two point charges $Q_{1}=5 c \& \mathrm{Q}_{2}=1 \mathrm{nc}$, are located at $(-1,1,-3) \&(3,1,0)$.

8
Determine the electric field at Q_{1}
8. Find \vec{E} at $(2,0,2)$ if a line chenge of $10 \mathrm{pc} / \mathrm{m}$ lies along the y axis.

Two point charges $\mathrm{Q}_{2}=2 \mathrm{nc} \& \mathrm{Q}_{2}=4 \mathrm{nc}$ are located at $(1,1,1) \&(1,0,0)$.
9. Determine the potential at $\mathrm{p}(1,1,0)$ due to point charge.
10. Explain Different Magnetic Materials

Apply

Apply CO 2 CO 2 CO 2

Shri Shankaracharya Institute of Professional Management \& Technology Department of Electronics and Telecommunication Engineering

Class Test - I Session- Jan. - June, 2022 Month- June
SSIPMT RAIPUR

Time Allowed: 2 hrs Max Marks: 40
Note: - Attempt any 5 question. All questions carry equal marks.

Q. NO.	Questions	Marks	Levels of Bloom's taxonomy	COs
1.	Show that $\mathrm{e}^{j \omega 01}$ is periodic in nature with time period $2 \Pi / \omega_{0}$	$[8]$	Apply	CO 1
2.	State and prove any four properties of Fourier Series.	$[8]$	Understanding	CO

Find the Fourier Series for the Sawtooth Function shown below.
3.

[8]
Apply
CO 2

Consider an LTI system with input $\mathrm{x}(\mathrm{n}) \&$ impulse response $\mathrm{h}(\mathrm{n})$ given as:
$x(n)=2 n u(-n)$
4.
$h(n)=u(n)$
Calculate output of the system using convolution sum.
5. State whether the given system is linear, causal, time-invariant and stable.

$$
y(n)=2 x(n+1)+[x(n-1)] 2
$$

Calculate the impulse response of over all system
6.

[8]
Apply
CO

$$
h_{4}(t)=e^{-2 t} u(t), \quad h_{2}(t)=2 e^{-\prime} u(t)
$$

Shri Shankaracharya Institute of Professional Management \& Technology

Department of Electronics and Telecommunication Engineering
SSIPMT
Class Test - 1, Month- June 2022
Sem- ET\&T $4^{\text {th }}$ Subject- AEC
Time Allowed: 2 hrs Max Marks: 40
NOTE : (1) Attempt any Five Questions.
(2) Attempt question in serial order.

Q. NO. Questions \quad Marks | Levels of |
| :---: |
| Bloom's |
| taxonomy |\quad COs

1. and calculate the expression of $A_{i}, A_{V}, R_{i}, R_{0}, A_{V S}$ and $A_{i s}$.

For the CE amplifier circuit shown in the figure 1.
2.

Find $A_{i}, R_{i}, A_{v}, A_{v s}$ and R_{o}, Using miller and dual miller method.
What do you mean by cascaded amplifier? Find the expression for gain of an n stage cascaded amplifier.
For the given circuits in figure 2 . Find the value of input resistance, output resistance, voltage gain and current gain.
4.

The parameter are $h_{\text {ie }}=1.1 \mathrm{~K}, \mathrm{~h}_{\mathrm{fe}}=50, \mathrm{~h}_{\mathrm{oe}}=25 \times 10-6 \mathrm{~A} / \mathrm{V}, \mathrm{h}_{\mathrm{re}}=2.5 \times 10-4$.
5. Describe transistor RC coupling in brief.
6. Write a short note on Hybrid PI model.
[8] Apply 1
[8] Apply
[8] Apply
[8] Understanding 1

