Shri Shankaracharya Institute of Professional Management & Technology Department of Electronics and Telecommunication Engineering

Class Test - I Session- Jan - June, 2022 Month- June

Sem- ET&T 4th Subject- Analog Communication – B028411(28)

Time Allowed: 2 hrs Max Marks: 40

Note: - Attempt any 5 questions (Atleast One from each CO). All questions carry equal marks.

SSIPMT

Q. NO.	Questions	Marks	Levels of Bloom's taxonomy	COs
l	Define Modulation. What is the need for modulation. Also Define Modulation Index. Explain the meaning of over modulation, Undermdulation and Critical modulation on the basis of value of modulation index with the help of modulated signal	[4+4]	Apply	CO2
2	State and Prove Parseval's theorem for Energy signal	[8]	Understanding	CO2
3	Explain Square law modulator and demodulator for generating and detecting AM Signal.	[8]	Apply	COI
4	Determine the fourier transform of the Gaussian pulse $x(t) = e^{-b^2 t^2}$	[8]	Apply	COI
C	 Compare all the AM techniques under following heads a) Bandwidth b) Power saving c) Application d) Transmitter and Receiver complexity e) Frequency spectrum f) Standard equation 	[8]	Apply	CO2
6	 A given AM broadcast station transmits a total power of 40 kW when the carrier is modulated by a sinosidal signal with a modulation idex of 0.8, Calculate a) The Carrier Power b) The Tranmission Efficiency c) The peak amplitude of the carrier assuming the antenna to be represented by a (40+j0)Ω 	[8]	Apply	COI
7	Explain Armstrong method of generating FM Signal	[8]	Understanding	CO3
8	Differentiate between NBFM and WBFM	[8]	Understanding	CO3

Shri Shankaracharya Institute of Professional Management & Technology Department of Electronics and Telecommunication Engineering Class Test – I Session- Jan - June, 2022 Month- June Sem- ET&T 4th Subject- Probability Theory and Stochastic Processes – B028415(28)

Time Allowed: 2 hrs Max Marks: 40

Note: - Attempt any 5 question. All questions carry equal marks.

SSIPMT RAIPUR

6.

Q. NO.	Questions	Marks	Levels of Bloom's taxonomy	COs
	A random Variable X has a distribution function			
1.	$F_{X}(X) = \sum_{n=1}^{12} \frac{(n)^{2}}{650} u(x-n)$	[8]	Apply	CO2
	Find: 1. P{- infinity $\leq X \leq 6.5$ }2. P{X > 4}3. P{6 < X ≤ 9 }Find a constant b such that			
2.	$f_X(x) = \begin{cases} e^{3x}/4 & 0 \le x \le b\\ 0 & \text{elsewhere} \end{cases}$	[8]	Understanding	CO2
ع.	 Is a valid density function. A student is known to arrive late in the class 40% of the time. If the class meets five times each week find: The probability that student is late for atleast three classes in a week. Probability the student will not be late at all during a given week. 	[8]	Apply	COI
4.	 An airline in a small city has five departures each day. It is knownthat any given flight has a probability of 0.3 of departing late. For any given day, determine the probabilities that: 1. No flights depart late 2. All flights depart late 3. Three or more flights depart late 	[8]	Apply	COI
5.	Find the value of constant of A such that $x < -1$ $\int_{0}^{0} f(1 - x^{2}) \cos(\pi x/2) \qquad -1 \le x \le 1$ $1 \le x$	[8]	Apply	CO2
	Is a valid density function			
L	In a box there are 100 resistors having resistance and tolerance as shown in the table below. Three events are defined as A as "draw a 47 ohm resistor", B as "draw a resistor having tolerance 5%", C as "draw a 100 ohm resistor". Find the joint and conditional probabilities.			

Resistor (ohm)	Tolerance			
	5%	10%	Total	
22	10	14	24	
47	28	16	44	
100	24	8	32	
Total	62	38	100	

[8]

Apply

COI

Shri Shankaracharya Institute of Professional Management & Technology Department of Electronics and Telecommunication Engineering Class Test - 1 Session- Jan. – June, 2021 Month- June

Sem- ET&T 4th Subject- EMF - B028413(028)

SSIPMT RAIPUR

Time Allowed: 2 hrs Max Marks: 40

 <i>Note: -</i> Part 1 carry 2 marks for each question, p	part 2 carry 8 marks for each question. Atte	empt 4 questions from	n each part. Levels of	
Q. NO.	Questions	Marks	Bloom's taxonomy	COs

PART-1

1.	A Scalar function, V is given by $V=xyz^2$, find the gradient of V.	2	Apply	CO1
2.	If a vector, $\vec{B} = 4xy^2\hat{a}x + 2y^3\hat{a}y + xyz\hat{a}z$. find divegence of B.	2	Apply	COI
3.	Given a vector, $\vec{A} = 3x\hat{a}_x + y\hat{a}_y + 5z\hat{a}_z$. Find the curt of \vec{A} .	2	Apply	CO1
4.	If the scalar potential is given by $V = x^2 - y^2 - z^2$ volts. Find the laplacian of V.	2	Apply	COI
5.	If a vector $\vec{A} = 4\hat{a}_x + 2\hat{a}_y + \hat{a}_z$ express it in cylindrical coordinater.	2	Apply	COI

PART-2

6.	Two charges $Q_1 = 2\mu c$ & $Q_2 = 5\mu c$ are located at (-3, 7, 4) & (2, 4, -1) respectively. Determine the force on Q_2 due to Q_1 .	1	3	Apply	CO2
7.	Two point charges $Q_1 = 5c \& Q_2 = 1nc$, are located at (-1, 1, -3) & (3, 1, 0). Determine the electric field at Q_1 .		8	Apply	CO2
8.	Find \vec{E} at (2, 0, 2) if a line chenge of 10 pc/m lies along the y axis.		8	Apply	CO2
.	Two point charges $Q_2 = 2nc \& Q_2 = 4nc$ are located at $(1, 1, 1) \& (1, 0, 0)$. Determine the potential at p $(1, 1, 0)$ due to point charge.		8	Apply	CO2
10.	Explain Different Magnetic Materials		8	Understanding	CO3

"Teachers can open the door, but you must enter it yourself."

Shri Shankaracharya Institute of Professional Management & Technology Department of Electronics and Telecommunication Engineering

Class Test - I Session- Jan. - June, 2022 Month- June

Sem- 4th Subject- Signal and System - B028414(028)

Time Allowed: 2 hrs Max Marks: 40

Note: - Attempt any 5 question. All questions carry equal marks.

SSIPMT

3.

6.

Q. NO.	Questions	Marks	Levels of Bloom's taxonomy	COs
1.	Show that $e^{j\omega_0 t}$ is periodic in nature with time period $2\Pi/\omega_0$	[8]	Apply	COI
2.	State and prove any four properties of Fourier Series.	[8]	Understanding	CO2
	Find the Fourier Series for the Sawtooth Function shown below.			

[8]

CO2

Apply

ft).

4.	Consider an LTI system with input x (n) & impulse response h (n) given as: x (n) = $2n u(-n)$ h (n) = $u(n)$ Calculate output of the system using convolution sum.	[8]	Apply	CO5
5.	State whether the given system is linear, causal, time-invariant and stable. y(n)=2x(n+1) + [x(n-1)]2	[8]	Apply	COI

Calculate the impulse response of over all system

 $h_1(t) = e^{-2t}u(t), \ h_2(t) = 2e^{-t}u(t)$

Shri Shankaracharya Institute of Professional Management & Technology Department of Electronics and Telecommunication Engineering

Class Test – I , Month- June 2022

Sem- ET&T 4th Subject- <u>AEC</u>

Time Allowed: 2 hrs Max Marks: 40

NOTE : (1) Attempt any Five Questions.

SSIPMT RAIPUR

(2) Attempt question in serial order.

Q. NO.	Questions	Marks	Levels of Bloom's taxonomy	COs
1.	Draw low frequency h parameter model for CE configuration with resistive load and calculate the expression of A_i , A_V , R_i , R_O , A_{VS} and A_{iS} .	[8]	Understanding	1
2.	For the CE amplifier circuit shown in the figure 1. Find A_{i_1} , R_{i_2} , A_{v_2} , A_{v_5} , and R_{o_2} . Using miller and dual miller method.	[8]	Apply	1
3.	What do you mean by cascaded amplifier? Find the expression for gain of an n stage cascaded amplifier.	[8]	Apply	1
4.	For the given circuits in figure 2. Find the value of input resistance, output resistance, voltage gain and current gain. The parameter are $h_{ie} = 1.1$ K, $h_{fe} = 50$, $h_{oe} = 25 \times 10^{-6}$ A/V, $h_{re} = 2.5 \times 10^{-4}$.	[8]	Apply	2
5.	Describe transistor RC coupling in brief.	[8]	Apply	2
6.	Write a short note on Hybrid PI model. $\sqrt[9]{V_{cc}}$	[8]	Understanding	2
F	ig 1. 10K 10K 10K 1002 1002 10K			*